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Phase shift analysis of the Landau-Lifshitz equation 
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Institute of Physics and Astronomy, University of Aarhus, DK-8WO Aarhus C, Denmark 

Received 16 November 1992, in final form 8 January 1993 

A b s h c t .  W e  derive the complete spectrum of the Landau-Lifshitz equation using the 
Huota method. Subsequently, we perform a phase shift analysis of spin-wave-kink and 
spin-wavebreather collisions, respectively. Finally, we use this result in order to derive 
the spin wave density of states in the presence of an arbitraq number of solitons. 

1. Introduction 

During the past decade, the Landau-Lifshitz (L-L) equation has attracted 
considerable attention. It was originally derived as a model for magnetic clystals [I], 
but has later been identified as a soliton-bearing system. Since the initial work by 
Sklyanin 121, who derived the compatibility condition and solved the initial-value 
problem using the inverse scattering transform (IST), the toroidal topology of the 
spectral problem has presented some difficulty 13-51. The phase shift has been 
calculated explicitly by Bikbaev 161, who used a dressing procedure. 

Papers based on the IST have dominated and only little attention has been paid to 
Hirota’s approach [7], despite the fact that it offers a much more intuitive framework 
of handling nonlinearity. In this paper we draw on the solution by Bogdan and 
Kovalev [SI, who solved the L-L equation in the pure N-soliton case by means of 
Hirota’s bilinear operators. For a more thorough derivation, see also [9]. 

The statistical mechanics of a system is contained in the partition function, which is 
basically either a summation over all states or a summation over all energies weighted 
by the density of states. This last ‘configurational approach’ [lo] is appealing since 
integrable models can be mapped onto ideal gas phenomenologies. In the present 
paper we shall not embark on a complete statistical mechanical analysis of the L-L 
equation, but perform a phase shift analysis yielding the complete density of states-a 
necessary prerequisite for a full treatment of the statistical problem. 

Firstly, we derive the elementary solutions of the GL equation by ordinary 
methods, and then derive the complete spectrum of solutions by means of Hirota’s 
bilinear operators. Then, following the work of 111-131 on the sine-Gordon equation 
and the classical Heisenberg-chain, we calculate the phase shift of a spin wave 
colliding with an arbitraq number of solitons. Finally, we demonstrate how to derive 
the density of states of spin waves and discuss the result in some detail. 

t Resent address: Telecommunications Research Laboratory, Lyngs0 All6 2, DK-2970 Hersholm, 
Denmark. 
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2. The model 

M Svendsen and H C Fogedby 

Basic solid state physics tells us [14] that magnetic ordering can be described by 
the Heisenberg model, H = -JCij  Si - Si, where the i , j  index represents evenly 
spaced neighbouring spins S on some lattice. Improving this model by adding spatially 
inhomogenous terms, we can write 

where we have introduced anisotropy parameters Q and 0, and SIi, SZi are the I- 
and y-components of the spin field, respectively. We have furthermore limited the 
discussion to a spin chain and, without loss of generality, we have selected the z-axis 
as the axis of easiest magnetization. 

In the limit of a large spin value we can treat the quantum mechanical spin 
operators as classical spins. Upon defining a spin field S(r, t )  and if we furthermore 
limit the discussion to long-wavelength excitations, an expansion of (1) to lowest order 
in the interspin distance a yields the Hamiltonian 

in some appropriate units and 

j 3  > j 2  > . 

Here the spin field has been normalized to unity, the infinite ground-state energy 
has been subtracted, and the anisotropy parameters j, . . .j3 have been introduced in 
accordance with common notation. 

Furthermore, the commutator algebra of the spin operators must be replaced by 
the Poisson-bracket algebra for classical spins in order to preserve the identity of the 
spin field as an angular momentum: 

{S i (Z . t ) ,SY(&t)}  = -&(I- y ) C E i j k S k ( I , t )  (3) 
k 

where S(z, i) is defined by an underlying canonical basis. Since the Hamiltonian 
is the generator of time translations the equation of motion can be derived from 
dS/dt  = { H ( z , t ) , S ( z , i ) } ,  yielding 

commonly referred to as the Landau-Lifshitr equation. 
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3. Elementary solutions 

The first problem is of course to construct a canonical basis in which to define the 
spin field and which satisfies (3). This is done by defining the canonical coordinate 
q(z , t )  with the conjugate momentum p ( z ,  t )  by 

s, = ~ c o s q  

s, = m s i n q  

s 3 = p .  
By insertion of (5) in (2) the Hamiltonian takes the form 

2 

and the equations of motion for q and p become 

2 1 d2p ( j = { H , q ] = - - - -  
1 - p2dx2 (1 -ppz)2 (2) 

Since the Hamiltonian cannot be separated into a kinetic and a potential energy 
part, the usual particle-like interpretation of the model is not possible. Therefore, to 
construct the momentum IJ one has to adopt another method. In view of the more 
general interpretation of the momentum as generator of space-translations, such an 
operator must be characterized by the property {IJ, f}  = -d f /dx, where f is an 
arbitrary function on phase-space. 

The momentum is not uniquely defined, but as discussed in [2] ,  ll = 
J q(dp/dx) dx is to be preferred. The Poisson bracket of IJ with H 

upper limit 

(9) 
1 d S  I n , H l  = - [ - (-) t ( j 3  - A )  s:+ ( j 3  - j,) s;] 
2 dx lower limil 

vanishes for both symmetric and anti-symmetric boundary conditions, assuming 
dS/dz - 0 as 1x1 - cu. This proves H to be translationally invariant-or by 
reversing the order of Il and H :  {H,II} = dIJ/dt = 0; that is, IJ is a constant of 
motion since the Hamiltonian is the generator of time translations. 

Due to lack of rotational symmetries in spin space none of the components of 
the total angular momentum are conserved. However, notice that the ground state is 
two-fold degenerate (S, = &l). 
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3.1. Kinks 
The simplest solution of (7) and (8) is obtained by assuming q constant: q = qo. 
Insertion yields p = $( j ,  - jl)(l - p z )  sin2qo which is readily integrated: p(r, t)  = 
tanh(wl + f(x)) where w = i(j, - jl)sin2qo and f is an arbitrary function of r 
only. If we furthermore assume that f is a linear function, f(r) = k r  + 40, we 
obtain the soliton or kink solution 

q = qo 

M Svendren and H C Fogedby 

p = tanh(kr + wt  + d o ) .  (10) 
The associated dispersion relation is obtained by demanding Q = 0 in (7): 

w = ;( j ,  - j , )  sin2qo 

The motion of @e kink is rather restricted in (w ,  IC)-space, with wmax = ( j ,  - j l ) /2  
and ( j ,  - j,) 5 kZ < ( j ,  - j ,). The phase velocity U = w/k attains its maximum 
value at approxunatety qo= 7r/4 or vmZ- ~(jz-jl)[(j~-jl)+(j3-jz)]-1~z. The 
conserved quantities are E = 21ICl and II = 2q0signk, respectively. In terms of the 
spin field the kink solution is 

kz = [( j ,  - j , )  cos’ qo + ( j ,  - j,)sinZ qo] . (11) 

SI = cosqO/cosh(kz + w t  + +o) 

S, = sin qo/cosh( kz + wt  + do) (12) 
S, = tanh( ICx + wt  + +o) 

which can be interpreted as follows: the magnetization is almost constant IS,l = 1 
along the chain except for a very narrow region of width N 2u/lICl (remember the 
unit of length is the lattice distance a) which has been estimated in [I] to some 
IO2 p m  in real ferromagnets. Within this region the spin field rotates smoothly an 
angle ?r in a plane defined by e, and (cosqoe,+sinqoe2), where e l . .  . e3 are the unit 
vectors of the coordinate system This kind of solution is also known as a domain 
wall separating large regions of opposite spin. 

3.2. Spin waves 

The explicit form of the L-L equation is 

(13) 1 SZaZs3 - s3a2s2 + ( j 3  - jZ)SZs3 (:;it) = ( s3a$% - s,a2s3 + ( j ,  - j 3 ) s l s 3  

aP53 ~ l ~ Z ~ , - ~ , ~ ~ ~ , + ~ ~ , - ~ l ~ ~ , s *  

where the abbreviated notation 8, = a/ax has been introduced. Weak excitations 
may be characterized by SI % 0, S, sz 0 and S, % 1, in which case (13) reduces to 

(14) 

-a linear equation. Some elementary manipulations will convince the reader that 
these equations are solved by the spin-wave solution 

a,S, = -a;S, + ( j ,  - jz)Sz a,Sz = a2Sl + (jl -j3)S1 
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where 

and with dispersion relation 

This is the kind of long-wavelength solutions always present in a many-body system 
with conserved quantities [U]. The individual s ins precess around the e,-axis in 
an elliptic movement with eccentricity c = &, and since we have defined the 
anisotropy parameter of the e,-axis greater than the corresponding parameter of the 
e,-&, the major axis of the ellipse is along the latter one. 

4. Hirota's method 

The starting point of the Hirota method is the definition of new differential operators 
D, and D,: 

(18) 

Now, following [8] we define the initial 

DyDE(a. b) = (a, - a,,)m(a, - a,,)"a(z,t)b(z',t')l.,=, 
t'=t 

for non-negative integers m and n. 
transformation 

f* f  -g*9 
f ' f  +9*9 

s -  2 f ' s  
f'f + 9'9 - SI + is ,  = 

Later, Hirota 1161 demonstrated the following bilinear representation of the L-L 
equation 

D,(f". f t g* .g)  = O  
( Q + D % f  ' s ' ) - a ( fg*  t f ' s ) - a b ( f s ' - f ' s ) = o  (22) 
(iD, - DZ,)( f' . f - 9' '9)  = 0 

which will serve as the starting point for our investigation. if we interpret products 
like fg' as f . g' and the bilinear differential operators as ordinary differential 
operators acting on the 'functions' f . g*, equations (22) certainly look linear. In what 
sense this is actually true, we shall explore below. 
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4.1. One-soliton soliition 

The general idea when solving the bilinear equations [17] is to mume a series 
'expansion of functions f and g in some arbitrary parameter E ,  

M Svendsen and H C Fogedby 

where there is no reason to worry about convergence, since we shall soon prove that 
both series are terminated after a finite number of terms. Furthermore, since there 
is no restrictions on the choice of the expansion parameter E ,  we shall choose E = 1 
whenever convenient. 

Now, since E is an arbitrary parameter, equations (22.) have to be satisfied for 
each power of E when inserting the expansions. To zeroth order in E we find upon 
insertion of (23) in (22): 

D,(f," fo + d . go) = 0 

(at t D:)(fo, go') - d f o d  + fOgo) - ab(fog;j - fo'go) = 0 (24) 

(a, - D",)(fli ' fo - g; ' go) = 0. 

This equation is solved if we choose fo = 1 and go = 0. 
To first order in E we obtain the equations 

D,(1' f i  + fi '1) = 0 

(Q + DZ.)(1' 9 ; )  - 
(D, - D,)( I ' f i +  f ; ' 1 ) = 0  

+ 91) - a b ( d  - 91) = 0 (w) 

which are satisfied by fi = 0 and g - e'J, where 17 = I c ~ + w t + 9 ~  and 90 = 96+i9; 
is some (complex) phase. The dispersion relation is ' -. 

w = - a ( l - b ) s i n ~ $  k 2 = ~ a b + ~ a ( ~ - b ) c o s Z ~ ~  (26) 

-identical to the one already derived in (11). 
Finally, to second order in E, f2 and g2 have to satisfy 

D,(1' f2 + f; . l +  g; 'g i )  = 0 

(Dt + D:)(fi. g; + 1 9;) - a [ ( d  t f i g ; )  t (92 + f;g1)1 

-ab[(gz'+figi)-(gz+figi)l  = O  (27) 
(Dt - D:)(1' f2 + f; '1 - 9; ' s i )  = 0 

which, along with all higher-order equations, are solved by f, = 0 and gn = 0 for 
n 2 2. As mentioned earlier, the series are terminated after a finite number of terms. 
Collecting all terms we conclude that there exists a solution f = 1 and g = en which, 
when inserted in (19), yields the kink already derived in (12). 
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4.2. Two-solifon solution 
Firstly, following the same line of arguments as in section 4.1 we can again set fo = 1 
and go = 0. Furthermore, since the first-order equations (25) are linear in g, due 
to the properties of D, and D,, we can add any number of terms eqt to 9,. Then 
equations (25) simply separate into independent sets of terms which are all identically 
zero provided wi and ki satisfies the dispersion relation. It is in this sense that the 
bilinear representation linearizes the L-L equation, thereby providing a nonlinear 
superposition principle for the evolution equation. 

To demonstrate this point in the case of the two-soliton solution, we put 

fl = 0 g1 = en' t eq2 (28) 

which according to the above arguments is a solution of (25). Unfortunately, this is 
not the end of our discussion, and we must also consider modifications of the higher- 
order terms in the series expansion of f and g. Unlike the kink solution, terms like 
D,(g; . gl) now become non-vanishing i n  (27): 

D,(gl '9;) = D,(en; .evZ) t Dz(eq; .eq1) # 0 (29) 

and the second-order equations are not solved by f2, g2 = 0. Following the standard 
procedure, we then assume 

gz = 0 (30) f - ev1t111t812 
2 -  

where the phase shift Bij has been introduced. Inserting in (27) and after some 
manipulations, we obtain the relation 

k .  - k .  w .  kz - w.ll.2 - 2ab(wi - wi)  
kj + ki wjki + wikz - 2ab(wi + w j )  . 

I I ' 1  = __ 

This solves the second-order equations, but to be sure that we can terminate the 
series after the second-order terms, we have to check the third-order equations too. 
An elementary but laborious calculation shows that the third-order equations are 
satisfied if the individual solitons satisfy the dispersion relation in (26). 

Summarizing the two soliton solution, we find 

(32) f = 1 + e?I t11zt8 = + 

In a reference system where the centre of mass of the two solitons is at rest 

- q& = & = y k, = k2 = k w1= -a2 = w (33) 

the two-soliton solution in terms of spin variables becomes 

2ee/2cosycoshkxcoshwt 
es cosh' kx t sinh2wt + cos' y 

-2es/zsiny coshkxsinhwt 
e8 coshzkx t sinh'wt + cos2 y 

eo cosh' kx - sinh' w t  - cos2 y 

escoshZkx+sinhZwttcos2y' 

S d X ,  t) = 

S,(x,t) = 

S,(X,t) = 

(34) 
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t 

X 

Figure 1. Contour map of the SI component 
of the twc-soliton solution (au). The full lines 
trace the CM of one of the solitons and the 
broken line indicates the path of that CM in the 
absence of collisions. Long after the interaction 
the only reminiscence of the interaction is a 
phase shift indicated by the two arrows. 

The phase shift is the undisputed trademark of a soliton. In figure 1 a contour 
map of the S,-component of the two-soliton solution in (34) is shown along with lines 
tracing the path of the centre of mass (CM) of one of the solitons. The broken lime 
indicates the path of the CM had the solitons not interacted. The CM traces different 
lines before and after the collision, indicating that long before and long after the 
collision the two solitons move independently of each other with constant velocity. 
Within a narrow region of the point of contact the two solitons interact nonlinearly 
before they break contact and resume their original form. The only reminiscence 
of the collision is a characteristic phase shift 0, derived above, indicated by the two 
arrows. 

4.3. N-soliron solutwn 

Clearly, the above procedure can be extended to N terms in g,, and following 
the procedure outlined above, the corresponding solutions can be constructed with 
rapidly increasing labour. Based on the tri-linear representation in (20), Bogdan and 
Kovalev 181 have suggested the general solution 

[NI21 
f = en#, t . . . tn . , , t8 ( i l  ,..., i d  

m=O N& 

where the total phase shift O ( i l , .  . . , i n )  is given by 

(35) 

where Oik;, are the individual phase shifts in (31), [ N / 2 ]  is the lowest integer greater 
than N / 2  and N: represents summation over all combinations of n elements in N .  
Notice, that the additivity of the total phase shift is just another manifestation of the 
nonlinear superposition principle. 
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The question of 
completeness has been proved in some cases-see e.g. [l8] for a proof in the case of 
the Korteweg-de Vries equation-but to the knowledge of the authors such a proof 
has not been published for the L-L equation. Such proofs are usually by mathematical 
induction and are very tedious. We shall not attempt such an approach and instead 
rely on the corresponding proof of the IST. 

In this paper we use Hirota’s Method as a convenient way of constructing explicit 
solutions, as opposed to the IST which offers a more formal framework of handling 
nonlinearity. The spectrum derived by us exhibits exactly the same phenomenology 
as the (complete) spectrum derived by the IST [2,9] and is in this sense complete. 

4.4. Breahers and win waves 

Breathers are special kinds of solitons containing an internal degree of freedom. They 
can be interpreted as a bound state of a number of kinks and can be obtained by 
performing an analytical continuation of wi and ki in (26) [l l] .  The simplest case is 
the analytical continuation of the two soliton solution. For convenience we use the 
parametrization 

Is there an upper limit to the number of solitons, N ?  

7& = r$; = y* y = u + i v  

w1 = U; = i~ w = -a( 1 - b )  sin(2y) (37) 
k, = k; = k k 2 = 2 a [ b + ( 1 - b ) ~ s 2 y ]  

where U and v are real. A brief calculation yields 

S, = 4eef2 

S, = -4e 

cos U cosh v cosh A‘ cos A” - sin U sinh v sinh A’ sin A” 
e8 cosh2A’ + eScos2u + cos2A” + cosh2v 

e,2 sin U cosh ‘U sinh A’ cos A“ + coszl sinh v cosh A’ sin A” 
(38) e@ cosh2A’ + e@ cos2u + cos2A” + cosh2v 

eecosh2A‘ + eecos2u - cos2A” - m h 2 v  
3 -  eecosh2A’+eecos2u+cos2A”+cosh2v s -  

where we have defined the phases A’ = k‘z + w‘t + 0 / 2  and A” = k“z + wNt.  
The internal degree of freedom is explicit in the oscillatory nature of the harmonic 
functions. The phase shift turns out to be real: 

(39) 
k” Im (wk’, - 2abw) 
kt Re (wk*2 - 2abu) 

ee = - 

that is, the phases of the harmonic functions are unaffected by the ‘self-interaction’. 
The oscillatory nature of the breathers suggests that spin waves can be derived in 

some appropriate limit. Since spin waves are extended states, we start by expanding 
about k’ = w’ = 0 where breathers become non-localized. Now, defining parameters 
c and p as 
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where vo is determined by the implicit expression, sinhuo = J-, we can 
expand w to second order in E in order to obtain 

(41) 
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W ( E )  = -iA, t B,c t iC,e2 

where 

A, = a  [Z&coshZp t ( 1  f b)sinhZp] 

B, = 2 a  ( l+b)cosh2p+Z&~inh2p]  

C, = ZA, 

and similarly for k: 

k ( e )  = iAk - B k e  + iC,Ez 

where 

A, = 1/2a [(Zb f I)sinh2p + &sinhZpL] 

E,  = 2 a  [&cosh2pf(l+b)sinh2p/2] A;' 

C,= 1. [B:-2a((l+b)cosh2ptZ&sinh2p)] A i ' .  

Clearly, the limit E i 0 now corresponds to k',w' -+ 0 .  The critical factor turns out 
to be the phase shift which in this limit diverges as 

eo - - F ( ~ ) E - ~  E < 1 (43) 
&,here 

Insertion of this result along with the expansions (41) and (42) in (38) yields, to 
leading order in E :  

S, = tanh(uo t p)sin(k"z t w"t)  2 t 0(e3)  

s, = - cos(k"z t w " t )  ' €2 t U(E3) 

s, = 1 t U (  €2) 

(45) 

which shows that a breather collapses into a spin wave in the limit E - 0. This result 
should be compared to (15); it is easy to check that these solutions are identical. 

This concludes the discussion of Hirota's method, since we have now derived 
all the elementary excitations: kinks, breathers and spin waves. Furthermore, by 
choosing different combinations of real and complex ws and ks, we can use the 
nonlinear superposition principle to construct the complete solution comprising any 
combination of these excitations thereby providing a reasonably handy method of 
handling the full spectrum of solutions of the intrinsically nonlinear problem. 
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5. Phase shift analysis 

Following [11,13] we assume that the ferromagnet extends a distance L along the 
z-axis, where the limit L 3 00 is consistent with the use of Hirota's method. In 
the absence of solitons, the only excitations present are spin waves parametrized 
by the wave vector k. If we furthermore impose periodic (anti-periodic) boundaly 
conditions, these continuum states are allowed only if they satisfy 

Lk = n2n + ~n i1, ... (46) 

where K = 0 , l  corresponds to periodic and anti-periodic boundaly conditions, 
respectively. The density of states is unaffected by this artifice, and in the absence of 
solitons we shall denote it po(k)  = d,n = L/2r .  

During collisions with solitons the spin waves suffer a phase shift 6, which alters 
the above condition to 

L k  = n2n + S ( k )  + KT (47) 

where 6( k) is the aplicir phase shift of the spin wave due to collision with an arbitrary 
number of solitons. This yields the simple expression for the density of states of the 
continuum modes in the presence of solitons: 

valid in the limit L - 00. 

5.1. Collisions wiih kinks 

As explained in section 4, Hirota's method offers a systematic way of treating the 
spectrum of solutions. Since we know in what limit a breather collapses into a 
spin wave, we can avoid the problem of the diverging phase shift by first calculating 
the phase shift of a breather due to collision with a kink, and then derive the 
corresponding result for a spin wave by performing the limit discussed above. 

We start by constructing the combined system of a breather and a kink. We 
parametrize the breather as in (37) and to avoid confusion of the individual solitons, 
we shall parametrize the kink in upper case letters, i.e. w3 = i2 and k3 = IC. 

Treating the breather as one excitation we can calculate the phase shift by inserting 
(the complex) k, w and (the real) K, R in (31). In particular, when collapsing the 
breather into a spin wave by taking the limits V,w'  - 0, we arrive at 

where superscript (k )  refers to collision with a kink and 
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6 . 2 8 ~  

0.04 \ 

-3.14 FIgurp 2. Phase shift 6(*) of spin wave due to 
collision with a kimk as a function of wave vector k .  loo -100 -50 0 50 

Parameters are a = 10, b = 5 and K = 5.0. k 

Here the spin wave has been re-parametrized by k" + k and w" -+ w .  A plot of the 
phase shift as a function of k is shown in figure 2. 

The imaginary part of the total phase shift is associated uith the phases of the 
harmonic functions, and is therefore the phase shift of the spin wave. This can also 
be verifed directly by writing the solution in (19) explicitly in terms of the real and 
imaginary parts of the complex qois. kis, wis and a general (complex) phase shift. 

As discussed previously, the phase shift of a soliton colliding with several solitons 
is an additive quantity. The phase shift due to collision with N kinks is then simply 
the sum of the individual contributions. Enumerating the individual kinks we obtain, 
defining sik) according to (49), 

6 = 6 j k ) .  

This sum completely determines the phase shift of a spin wave by collision with an 
arbitrary number of kinks. 

5.2. Collisions with breathers 
To calculate the influence of breathers on the density of spin wave states, we define 
the combined system of hvo breathers: 

w, = w; = w 
k, = k; = k breather #1 { 
w3 = w; = w* 

k3 = k: = kb . breather #2 { 
The phase shift of #1 can be calculated by insertion of (51) into (31). Finally, 
collapsing #1 into a spin wave, we arrive at the (imaginary part of the) phase shift: 

kf - k f  + 
= arctan (G) - arctan (+) 

w ( k f  - kin) + w$k2 - 2ab(w - w f )  
uL(k2+ 1 ) -2wk;k f  + arctan ( 

u ( k f  + !@) - wfk2 - 2ab(w + uf) 
u i ( k 2  + 1) + 2wkik; 

+ arctan ( 
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P 

Ngure 5. Density of spin wave states in the 
presence of one soliton (a.). The dip is caused 
by the soliton which ‘traps’ exactly one spin wave 

k mode ko. 

where again the spin wave has been re-parametrized by k” -, k and w” + w.  
Equation (52) solves the density of states of spin waves in the presence of a 

breather. The total effect of M breathers adds up, 6 = exactly as in the 
case of N kinks. Notice that in the limit where breather #2 collapses into another 
spin wave, that is, in the limit ki ,wl ,  + 0, the above phase shift vanishes, consistent 
with the fact that spin waves satisfy the linear superposition principle. 

5.3. Discussion 

The effect of the presence of a kink on the density of states of spin waves is depicted 
in figure 3. The kink causes a ‘dip’ in the density of states at some characteristic 
wavevector ko, which has to be determined from the implicit relation di6(k)l,o = 0. 
The ‘dip’ corresponds to the mode ko being ‘trapped‘ by the kink since ko depends 
on a ,  b as well as the kinkparameters IC, 0. 

Such an interpretation is corroborated by the following calculation: the net change 
in the density of spin waves p is the difference after and before the collision, 
A p  = dk6(k)/2?r.  The net change in the number of spin modes available is the 
integral of this difference: 

which is evident from figure 2. Basically this is just Levinson’s theorem, known from 
scattering theory, and demonstrates the intimate connection between soliton theory 
and scattering theory. Finally, we note that a similar calculation is true for the 
collision with breathers as well. 

It should now be clear that a complete decomposition of the spectrum of solutions 
of the L-L equation is possible forming the basis of the ‘configurational’ approach [lo]. 
The mapping onto an ideal gas phenomenology consisting of two kinds of ‘particles’, 
namely kinks and breathers, and ‘radiation’, i.e. spin waves, makes complicated 
integrations Over phase space unnecessary when calculating statistical mechanical 
properties, since they can be replaced by summations over all excited fundamental 
modes (weighted by their proper density of states). Finally we note, that such a 
decomposition can also be done in the rsT-formalism, where the equivalent action 
angle representation can be derived as weU [Z, 91. 
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